Thin 1: Suppose F is algebraically dosed. \exists a dgreesd polyumbl $f \in \mathbb{F}\left[X_{1}, \cdots, X_{n}\right]$ that requires crust of she $\Omega\left(\left(\left(^{n+d} d\right)\right)\right.$.
If sketch: Let W : the space of degree $\leq d$ polynoubls in $\left.F_{X_{1}}, \cdots X_{t}\right]$. Let $V=$ the "variety of sine $\leq s$ crucaltes", where s is determined later.
$V \times W \xrightarrow{T_{1}} V \quad$ Let $z \leq V \times W$ be the variety

$$
\pi_{2} \bigvee_{W}
$$

$$
\left\{(c, f): H_{\text {om }} \leq d(C)=f\right\}
$$

For $\phi: x \rightarrow y, x, y$ zed

$$
\left.\rightarrow S_{0} \operatorname{dim} z \leq \operatorname{dim} V \quad \text { (adallly }=h_{0} \operatorname{ld}_{5}\right) \text {, }
$$

and = hols for chore $s=\binom{n+d}{d}-1<d$ mam W. Then $\exists f \in W \backslash \pi_{2}(z)$. "geneal" $p \in \phi(x)$.

$$
\text { Then } f \text { 's not computed by any } C \in V \text { she } f \neq H_{\text {om }} \leq d(C)
$$

One can even show that the coeffiderts of f can le chosen from a large enough fondle set $S \subseteq \mathbb{F}$. To prove this, first prove a bowed $\operatorname{deg} \pi_{2}(z)<|S|$. Then noe B'ezout's inequality to show $\exists f \in S^{\binom{n+d}{d}} \backslash \pi_{2}(Z)$.

Polynomial identity testing (PIT)
Given a polynomial $f \in \mathbb{F}\left[X_{1}, \cdots, X_{n}\right]$, represatod by , e.. , an algetrate circuit of size we would luke to know if $f=0$. poly (n).

$$
\begin{aligned}
& \begin{array}{l}
\left.\operatorname{dim} \mathcal{E}^{-1}(p) \geqslant \operatorname{din} x-\operatorname{din} \phi(x) \quad S_{0} \operatorname{dim}\left(\pi_{2}(z)\right) \leq \operatorname{dim} Z \leq \operatorname{dim} V \leq s, s \in d x\right) \\
\text { final } \gamma \in \phi(x)
\end{array} \\
& \text { moral } p \in \phi(x) \text {, }
\end{aligned}
$$

In general, a degree $\leq d$ polynomial in X_{1}, \cdots, X_{n} can have $\binom{n+d}{d}$ ponomals. So writing down f can take expmential time if $d=\operatorname{poly}(n)$.

A randourized polynowial-tine algorition.
Assur deg $(f) \leq d$ and f can be evaluated in poly natal time
There is a randomized poly-the algorithm finding if $f=0$. It 's based on the Schwartz-Zippel Lemma.
Recall: (Schwartz-zippel) Let $S \subseteq \mathbb{F}$ be a nonempty finite set.
suppose $f \neq 0$. Then $\left.\operatorname{pr}_{a_{n}[f(a)} S^{n}=0\right] \leq \frac{\operatorname{deg}(f)}{|S|}$.
The raudewhed PIT algorithm: Let $S \subseteq \mathbb{F}$ be a finite set of size $\geq d / \varepsilon$. ε error If F is too small, replace F by an extension field and then choose S.
Randomly choose $a \in S^{n}$. \quad ie. $i=0^{\prime \prime}$
If $f(a)=0$, output YES. Otherwise output NO.
By sckuartz-zippel: If $f=0$, always output YES.
Technical If $f \neq 0$, output No with probabi(ly $\geqslant 1-\frac{d}{|s|} \geqslant 1-\varepsilon$.
remark : Say $\mathbb{F}=Q$. We may even allow $d=\exp (n)$. We may chore $S=\{0,1, \ldots, d\}$. It takes poly (n) bits to represent an elenert in S.
So it takes
$\exp (n) \quad$ But then the droust may compute integers of bet length exp ln). E.g. 2^{d} of bit lagth time in the To fix th's. Choose random $p \in\{2, \cdots, N\}$, where $N=\exp (n)$ is large enaigh. $d=\exp (w$.

Bodean model Repeat until p 's prime (tested via primallety testing). Them work over $\mathbb{Z} / p=\mathbb{F}_{p}$
Cor PIT GcokP, i.e. $\left\{\begin{array}{l}\text { For YES instances, output YES. } \\ \text { For No instances, output NO w.p. } \geq 1 / 2 .\end{array}\right.$
Can we find a deternhustie poly-time PIT algorithm) (We belleve so as we believe $\operatorname{coRp}=P$!)

We say a PIT algorthm (radoundal or de termbistic) is whete-box it it "knows" the imput polynoulal f, and black-box if it aly uses f as an evaluation ovade, i.e. it only queres the value of f at a $\in \mathbb{F}^{n}$.
E.g., the Schwartz-Z:ppel-based PIT algorithan is a black-bax algrithm.

Adaptiveness does not help a black -box PIT algorthm. (why?).
Def (Hitting-sets.) Let $C \subseteq \mathbb{F}_{[}\left[x_{1}, \cdots, X_{n}\right]$. A findte set $H \leq \mathbb{F}^{n}$ is a hitthg-set for C if for every nomzero $f \in C$, there exsts $a \in H$ s.t. $f(a) \neq 0$.

$$
H \text { 's a } \frac{\delta \text {-hctting-set for } C \text { if }}{\underset{\operatorname{pr}[f(a)}{\operatorname{anaH}}=0] \leq \delta .}
$$

Remork: we often allow H to be a multi-set. expluit E "expluct" means"effictarly constructible"
Gwen anknitthy set H for C, we have a deterninstic 1 NDT algorith for C :
Just enmercte $a \in H$ and evaluate $f(a)$. Output No if \exists a $\in H$ s.t. $f(a) \neq 0$.
Caversely, glwen detemieristic black-box PIT a lgorthmen for C, the (malti-) set of querles $H \subseteq \mathbb{F}^{\text {is }}$ a hitting-set for C.
Sorpsmall hitting sets \Longleftrightarrow fast detemuncestic black-box PIT algoithme.
Deshging efflctent deternsstic black-box PIT algrithus is equivalent to constarting explicat hitting-sets of poly nombal size.
Def A hittig-set gencrater ${ }^{(H S G)} G: \| H^{s} \rightarrow \mathbb{F}^{n}$ for C is a polynoulal map s.t. for every $0 \neq f \in C$, we have $f \circ G \neq 0$,
C suppose G is defind by $g_{1}, \cdots, g_{n} \in \mathbb{F}\left[Y_{1}, \cdots, Y_{s}\right]$... Then $f \cdot G:=f\left(g_{1}, \cdots, g_{n}\right) \in \mathscr{F}\left[y_{1}, \cdots, y_{s}\right]$.
From HSGs to hittug-sets:

From HOGs to hitting-sets:
If $H \subseteq \mathbb{F}^{s}$ is a kittig-set for $C^{\prime}=\{f \circ G: f \in C\}$. Then $G(H)$ is a kuttinges for C.
 for $f \in C$
suppose $s=1$. Any set of size dd' +1 is a hinting set for fo G.
Example (Kronecker substitution): $G: \| \rightarrow \mathbb{F}^{h}$ sending $a \in \mathbb{F}$ to $\left(a, a^{d}, a^{d^{2}}, \ldots, a^{d^{n-1}}\right)$ is a
HSG for individual degree $<d$ polynomials (is. $\operatorname{deg}_{X_{i}}(f)<d, \quad i=1, \cdots, n$)

$$
\begin{aligned}
& f \neq 0 \\
& \text { ind. } \operatorname{deg} \text { of } f<d
\end{aligned} \Rightarrow f\left(y, y^{d}, \cdots y^{d^{n-1}}\right) \neq 0
$$

However, $\operatorname{deg}(f \cdot G)$ is experientially large.
From hatting-sets to HSGs: suppose H is a h $\mid t+1$ g-set for $C ;|H|=k$
Using interpolation, we may fud $G: \mathbb{F} \rightarrow \mathbb{F}^{h}$ defined by degree $\leq k-1$ polynomials.
st. $H \subseteq G(\mathbb{F})$.
For nonzero $f \in C,\left.f\right|_{H} \neq 0$. So $\left.f\right|_{G(\mathbb{F})} \neq 0$. So foG $\neq 0$,
So G 's a HSG for C.
Conclusion: Explicit hutting-sets of size $\leq \operatorname{pdy}(n) \Leftrightarrow$ Explicit HSG $\mathbb{F}^{s} \rightarrow \mathbb{F}^{4}$ defied by degnee-poly(n) pdynauds.

$$
s=o(1)
$$

(Assuming polynomials in C have degree $\leq p o l y(n))$.

